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Abstract A pyridoxal-based fluorescent probe HL was syn-
thesized for the detection of Cu2+ in methanol with moderate
selectivity. Upon addition of Cu2+, to the solution of the probe
in methanol exhibited a remarkable change in emission at
500 nm. With the limit of detection of 10 μM, the probe could
well meet the recommended (less than 32 μM in drinking
water) of the World Health Organization (WHO). The intra-
cellular Cu2+ imaging behaviour of HL was carried out on
HeLa cells.
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Introduction

Copper is an essential trace element that is widely distrib-
uted in animal and plant tissues [1, 2]. It also acts as a
cofactor for a number of metalloenzymes such as catalase,
peroxidase and cytochrome oxidase to facilitate enzyme
function [3]. Copper ion is physiologically essential for
human heath as it plays important roles in bone formation,
connective tissue development and cellular respiration and
is also a fundamental nutrient at low amounts, <0.9 mg/
day for normal adults [4]. However, on the other hand,
excessive amounts of copper can result in severe diseases,

for example, eczema, damage of kidneys, neuro-
degenerative diseases etc. [5, 6]. The allowed concentra-
tion of copper ion in drinking water is less than 2 mg L−1

(32 μM), according to guidelines for drinking-water qual-
ity of the World Health Organization (WHO) [7] and ex-
cessive copper is not removed by conventional water
treatment processes. Therefore, in environment as well
as health monitoring, the detection of Cu2+ is undoubtedly
important. As a result, various analytical techniques for
Cu2+ detection have been developed such as by atomic
absorption/emission spectroscopy [8], inductively coupled
plasma mass spectrometry (ICP-MS) [9], and capillary
electrophoresis [10]. However, all of these methods re-
quire expensive and sophisticated instruments combined
with complicated sample pretreatment and therefore im-
practical for a real-time experiment. Recently, metal-
selective fluorescent chemosensors have attracted intense
attention for their simple, economical and real-time track-
ing of metal ions in environmental samples [11, 12] Cu2+

is a typical ion that leads to decreased fluorescent emis-
sions owing to quenching of the fluorescence by mecha-
nisms inherent to the paramagnetic species [13, 14].

Again, the luminescence properties of pyridoxal are
well known [15]. Therefore, we intended to explore the
potential of pyridoxal containing compounds as effective
sensing devices. Pyridoxal moiety imparts a physiological
feasibility as it is the biologically active form of vitamin
B6, pyridoxal 5- phosphate (PLP) and a versatile enzyme
cofactor responsible for amino acid metabolism in organ-
isms ranging from bacteria to human [16–50]. Several
metal complexes of Schiff bases derived from pyridoxal
and amino acids/polyamines have been reported [51–62].
Recently, a new Schiff base was generated by condensing
equimolar pyridoxal with 2-aminoethyl pyridine and its
vanadium and copper complexes were prepared [63, 64].
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The work presented herein is part of an extensive experi-
mental study designed to explore the potential of pyridoxal
Schiff bases to act as effective sensing material [64]. In this
paper, we report on the fluorescence quenching behaviour of

HL with moderate selectivity towards Cu2+ in methanol
(where, HL=[((2-(dimethylamino)ethylimino)methyl)-5-(hy-
droxymethyl)-2-methylpyridin-3-ol]. Biological study was
carried out with human cervical cancer cells of HeLa cell line.

Fig. 1 a 1H NMR, b 13C NMR in
CDCl3 and c FTIR spectra of HL
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Scheme 1 The schematic
representation of preparation of
HL and its copper (II) complexes
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Fig. 2 Electronic spectra of HL
(10−4 M) in methanol
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Experimental Details

Materials and Physical Methods

All reagents were purchased from Sigma-Aldrich and used as
received. Solvents were analytical grade and used without
purification. Human cervical cancer cells of HeLa cell line
were procured from National Center for Cell Science, Pune,
India, and used throughout the study. Elemental (C, H and N)
analyses were performed on a Perkin-Elmer 2400 II analyzer.
IR spectra were recorded in the region 400–4000 cm−1 on a
Bruker-Optics Alpha–T spectrophotometer with samples as
KBr disks. Electronic spectra were obtained by using a
Hitachi U-3501 spectrophotometer. Luminescence property
was measured using LS-55 Perkin Elmer fluorescence spec-
trophotometer at room temperature (298 K) by 1 cm path

length quartz cell. Fluorescence images of HeLa cells were
taken by a fluorescence microscope (Model: LEICA DMLS)
with an objective lens of 20X magnification. THERMO
MULTI SCAN EX microplate reader was used to measure
the absorbance of culture plate.

Biological Study

Cells were cultured in DMEM (Gibco BRL) supplemented
with 10 % FBS (Gibco BRL) and 1 % antibiotic mixture
containing PSN (Gibco BRL) at 37 °C in a humidified incu-
bator with 5 % CO2 flow and cells were grown to 80–90 %
confluence, harvested with 0.025 % trypsin (Gibco BRL) and
0.52 mM EDTA (Gibco BRL) in phosphate-buffered saline
(PBS), plated at the desired cell concentration and allowed to
re-equilibrate for 24 h before any treatment. Cells were rinsed
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Fig. 3 UV–vis spectral change of
HL (10−4 M) upon the addition of
Cu2+ in methanol at 25 °C, [stock
solution of Cu2+]=0.5 M
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Fig. 4 Fluorescence responses of
HL (10−4 M) to different
concentration of Cu2+ (0–8
equiv.). The arrow indicates the
signal changes as increasing the
Cu2+ concentration. λex=411 nm,
λem=500 nm
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with PBS and incubated with DMEM containingHL making
the final concentration up to 10 μM in DMEM [the stock
solution (1 mM) was prepared by dissolving HL in ethanol]
for 30 min at 37 °C. After incubation, bright field and fluo-
rescence images of HeLa cells were taken by fluorescence
microscope with an objective lens of 20Xmagnification; fluo-
rescence images of HeLa cells incubated with 10 μM HL for
30 min followed by addition of 10 μM Cu2+ ion were taken
and consequently fluorescence images were taken after further
addition of 50 μM Cu2+ ion.

In order to test the cytotoxicity of HL, 3-(4, 5-di-
methylthiazol-2-yl)-2,S-diphenyltetrazolium bromide
(MTT) assay was performed as per the procedure de-
scribed earlier [65]. After treatment with HL at different
doses of 1, 10, 20, 50 and 100 μM, respectively, for
12 h, 10 μl of MTT solution (10 mg/ml PBS) was
added to each well of a 96-well culture plate and again
incubated continuously at 37 °C for a period of 3 h. All
media were removed from wells and 100 μl of acidic
isopropyl alcohol was added into each well. The

intracellular formazan crystals (blue-violet) formed were
solubilised with 0.04 N acidic isopropyl alcohol and
absorbance of the solution was measured at 595 nm
wavelength with a microplate reader. The cell viability
was expressed as the optical density ratio of the treat-
ment to control. Values were expressed as mean±stan-
dard errors of three independent experiments. The cell
cytotoxicity was calculated as % cell cytotoxicity=
100 % - % cell viability.

Synthesis of HL

The chemosensor molecule HL was synthesized by fol-
lowing procedure. Pyridoxal hydrochloride (0.406 g,
2 mM) was dissolved in absolute methanol (15 mL) in
the presence of KOH (0.112 g, 2 mM) with stirring.
After 1 h of stirring, the separated white solid (KCl)
was filtered and the obtained clear solution was added
to a solution of N,N-dimethylethylenediamine (0.176 g,
2 mM) in methanol (15 mL) with stirring and the
resulting reaction mixture was refluxed for 4 h. The
completeness of the condensation reaction was checked
by performing thin layer chromatography. The solution
was evaporated by rotary evaporator and sticky mass
obtained was washed by cold ether and dried under
vacuum. (Yie ld : 0 .355 g , 0 .75 %) . 1H NMR
(300 MHz, CDCl3): δ 8.90 (s, 1H), 7.74 (s, 1H), 4.72
(s,1H), 3.78 (t, 2H), 3.42 (s, 1H), 2.69 (t, 2H), 2.46 (s,
3H), 2.30 (s, 6H). 13C NMR (75 MHz, CDCl3): δ
18.60, 45.43, 57.35, 59.36, 60.06, 119.66, 131.53,
137.26, 150.50, 155.20, 163.33; Anal. calc. for
C12H19N3O2: C, 60.74; H, 8.07; N, 17.71. Found: C,
59.97; H, 7.79; N, 17.05 %.

Fig. 5 Fluorescence response of
HL (10−4 M) on addition of
various metal ions (conc. of
Mn2+, Fe2+, Co2+, Ni2+ and
Cu2+=10−4 M; [Zn2+]=10−6 M.
λex=411 nm
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Fig. 6 Competitive fluorescence response ofHL (10−4 M) in presence of
8 equivalent of Cu2+ and 8 equivalent of other metal ions in methanol
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Result and Discussion

Synthesis of Ligand HL

The Schiff base ligand HL was synthesized by condensing
pyridoxal hydrochloride with N,N-dimethylethylenediamine
under reflux in MeOH and characterized by 1H NMR, 13C
NMR and FTIR spectroscopy (Fig. 1). The schematic repre-
sentation of the preparation of the Schiff base ligand HL and
its copper complexes is given in Scheme 1.

Spectroscopic Characterization

1H NMR Spectral Study of Ligand

The azomethine proton is the sharp singlets at
8.90 ppm. A sharp singlet at 7.75 ppm is assigned as
the proton at the ortho position with respect to nitrogen
atom of pyridine ring. Another sharp singlet at
4.72 ppm is assigned as the proton attached with carbon
atom of –CH2OH moiety. A triplet at 3.78 is assigned
as the two protons attached with carbon atom which is
further attached with azomethine nitrogen atom. Another
sharp singlet at 3.42 ppm is assigned as the proton

attached with oxygen atom of –CH2OH moiety. Another
triplet at 2.69 ppm is assigned as the two protons at-
tached carbon atom near to tertiary nitrogen atom of
amine part. A strong sharp singlet at the region
2.45 ppm is due to three protons of –CH3 attached at
the ortho position with respect to nitrogen atom of pyr-
idine ring. For HL, we get a sharp singlet at 2.30 ppm
for the two methyl hydrogen of end nitrogen of amine
part. But peaks for phenolic proton is absent probably
due to rapid exchange of deuterium of CDCl3.

FTIR Spectroscopy

FTIR spectra of HL showed the characteristic band due to
ν(C=N) at 1650 cm−1. A broad band of high intensity at
3399 cm−1 is attributed to the –OH stretching vibration of
the –CH2OH of the pyridoxal part of the ligand.

UV–vis Spectroscopic Studies

Initially, we have tried to carry out the experiments in
water but the solution of HL did not show stability over
time. Then we extended the experiments in EtOH-H2O
(4:1v/v) and methanol solutions. Here, we have reported

Fig. 7 Colour changes of HL
upon addition of various metal
ions under visible light in MeOH
solution

0 20 40 60 80 100

1.2

1.6

2.0

2.4

2.8

F
/F 0

[Cu(II)]X106 M

Ksv = 1.8 x 104 L mol-1                

R2 = the correlation 
coefficient of Stern–Volmer 
equation = 0.983 

Fig. 8 Stern–Volmer plot of
fluorescence quenching ofHL by
Cu2+ in methanol
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the electronic absorption spectral study in UV grade
methanol (Fig. 2). In case of HL, the absorption bands
around 209, 251 and 334 nm are assigned to the π–π*
transitions involving imine moiety. The absorption
bands at 411 nm is attributed to the n–π* transitions
of azomethine group [52].

Figure 3 shows the spectra recorded on titrating 10−4

(M) HL in methanol with 0.5 (M) Cu2+ solution. As ev-
ident from Fig. 3, HL was characterised by a broad ab-
sorption band near the region of 260 nm and 327 nm
which can be attributed to the π–π* transitions. Upon
stepwise increase in concentration of Cu2+, the absorption
intensity at λmax=260 and 327 nm decreased and a new
band at 640 nm appeared which was due to d-d transition.
In addition, there was an well defined isosbestic point at
467 nm indicating that a stable complex resulted having a

certain stoichiometric ratio as found in the previously re-
ported two copper(II) complexes of HL [66].

Fluorescence Quenching Properties and Binding Behaviour

The fluorescence spectra ofHLwere obtained by excitation of
the fluorophore at 411 nm inmethanol. In the absence of metal
ion, a strong emission peak was observed at 500 nm. The data
were recorded 1 m after copper ion was added. Upon addition
of 8 equiv. of Cu2+ to the solution of HL in methanol, com-
plete quenching was observed (Fig. 4).We initially studied the
fluorescence responses of HL to different metal ions. For ex-
ample, the fluorescence spectral outcome of HL in the pres-
ence of Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+ was measured in
methanol. It was found that, when 0.1 equiv. of Cu2+ was
added to the solution of HL, fluorescence quenching was
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Fig. 9 The pH effects on the
fluorescence intensity of the free
HL (0.1 μM) (black, ■) and
toward Cu2+ anion (300μM) (red,
●)

Fig. 10 Fluorescence titration of
HL+Cu2+ complex with EDTA in
methanol:water =9:1 (v/v) at
25 °C (λex=411 nm). Intensity
gradually increases upon gradual
addition of EDTA (total
11.25 mM) solution
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observed and at 1:1 stoichiometry the quenching efficiency
[(I0−I)/I0×100=47 %] suggesting that HL shows a specific
response to Cu2+ ions due to the chelation-enhanced fluores-
cence quenching (CHEQ) effect [67] but was slightly influ-
enced byMn2+, Fe2+, Co2+, Ni2+ ions and highly enhanced by
Zn2+ ion (Fig. 5).

The selectivity studies ofHL towards Cu2+ over other met-
al ions are carried out by adding 8 equivalent of Cu2+ to the
solution ofHL (0.5×10−4 M) in the presence of 8 equivalents
of other metal ions. The results indicated that the probe can
detect Cu2+ with moderate selectivity (Fig. 6).

The fluorescence titration ofHLwith Cu2+ was carried out
in a methanol solution at 298 K (Fig. 4). The fluorescence
intensity of HL at 500 nm was consistently reduced when
the concentration of Cu2+ was increased from 0 to 400 μM.
Fluorescence intensity was quenched about 47 % while the
concentration of Cu2+ reached about 0.1 equivalent. The linear
relationship of the fluorescence titration showed that HL
responded to Cu2+ in 1:1 stoichiometry as evident from the
crystal structure [66]. The association constant for Cu2+ was

estimated to be 6.21×104 M−1 in methanol by the linear
Benesi-Hildebrand equation F0/(F – F0)=F0/[HL]+F0/[HL]
x Ka x [Cu2+] [68] where, F is the change in the fluorescence
intensity ofHL at 500 nm, Ka is the association constant, and
[HL] and [Cu2+] are the concentration of HL and Cu2+, re-
spectively. By plotting F0/(F – F0) against the reciprocal of the
concentration of Cu2+, the association constant value Ka is
obtained from the ratio intercept/slope with a good linear cor-
relation coefficient (R2=0.9983). The high association con-
stant value is in accordance with the very stable isolated com-
plexes 1 and 2 [66]. Recently, Hou et al., Liu et al. and Wu
et al. have reported fluorescein, quinoline and pyrene based
effective Cu2+ quenching fluorescent sensors that exhibited
similar outcome [69–71].

The change in colour of HL upon addition of Cu2+ was
clearly distinguishable fromMn2+, Fe2+, Co2+, Ni2+, Zn2+ ions
under visible light by the naked-eye (Fig. 7).

From the steady-state Stern-Volmer plot (Ksv=1.8×
104 L mol−1, R2=0.9834) (Fig. 8) and the linear nature of
the plot suggests that only static quenching mode is present.
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Fig. 12 a Phase contrast image of HeLa cells, b fluorescence image of
HeLa cells, after being incubated with 10 μM HL only for 30 min at
37 °C, c fluorescence image of HeLa cells after being incubated with
10 μM HL for 30 min followed by 10 min incubation with 10 μM

extracellular Cu2+ ion at 37 °C and d reduction of fluorescence intensity
in the HeLa cells treated with the sensor and excess Cu2+ ion (50μM). All
the samples were excited at 400–450 nm
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It is well documented that heavy metal ions such as Cu2+,
Cd2+, Hg2+ and Pb2+ tend to quench the fluorescence through
electron- and/or energy-transfer processes [72].

From the pH dependence of fluorescence study (Fig. 9), it
was found that the fluorescence intensity of HL at 494 nm
remains unaffected at pH 7.4 which makes it suitable for ap-
plication under physiological conditions. These results indi-
cate that HL can be used as a selective fluorescent probe to
recognize and distinguish Cu2+ in the presence of various
metal ions. We have also performed a reversibility experiment
which proved that the binding of Cu2+ to HL is reversible
which is the key requirement of an ideal biologically relevant
chemosensor so that binding of guest molecule must occur
reversibly. In the presence of EDTA, a strong chelating ligand,
due to its strong affinity towards Cu2+, decomposition of the
Cu complex ofHL takes place thereby giving enhancement of
the fluorescent emission at 472 nm. As shown in Fig. 10 after
the addition of EDTA, the emission intensity of the original
ligand was gradually restored. This phenomenon certainly
gives a tacit support towards the reversible binding of HL
with Cu2+.

Determination of Detection Limit

To determine the detection limit, following equation was used.

DL ¼ K � Sb
.
S

where K=2 or 3 (we take 3 in this case), Sb is the standard
deviation of the blank solution and S is the slope of the cali-
bration curve. Here, the detection limit of HL for Cu2+ was
determined as 10 μM (Fig. 11).

Cell Studies

The intracellular Cu2+ imaging behaviour of HL was studied
on HeLa cells with the aid of fluorescence microscopy. After
incubation with HL the cells displayed moderate intracellular
fluorescence (Fig. 12b). However, fluorescence intensity was
gradually decreased when the HL pre-incubated cells were
added with Cu2+ ion (10–50 μM) (Fig. 12c and d). Therefore
this provides confirmatory evidence of this sensor to have the
specific ability to sense Cu2+ ions. The emission responses of
HL with various concentrations of added Cu2+ are clearly
evident from the cellular imaging. Hence, these results indi-
cate that HL is an efficient candidate for monitoring changes
in the intracellular Cu2+ concentration under different biolog-
ical conditions. In order to test its cytotoxicity, we performed
MTTassay in human cervical cancer cells treated with various
concentrations of chemosensorHL for up to 3 h. As shown in
Fig. 12a, 10 μMHL did not show significant cytotoxic effects
on human cervical cancer cells for at least up to 12 h of its
treatment. This thus suggests that HL can be readily used for

cellular application at the indicated dose and time of incuba-
tion without much concern about its cytotoxicity (Fig. 13).

Conclusion

A new fluorescent probe HL based on pyridoxal fluorophore
has been synthesized for detecting Cu2+ ion with moderate
selectivity in methanol with a low detection limit of 10 μM.
HL has appreciable sensing response at physiological pH and
the process is found to be reversible when tested with EDTA,
indicating that the sensor is promising for biological
applications.
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